
ABSTRACT
A tremendous amount of interesting data exists on the
web; however, much of this data resides in a semi-
structured format that hinders extraction and data
analysis. Writing programs to extract this data requires
substantial tedious effort and also presents a technical
blockade for those without programming experience. To
provide access to these new sources of data, we present a
simple browser-integrated visual interface that facilitates
data acquisition over multiple similar web pages. Here,
we describe our system, nicknamed Scrappy, and show
that it enables data acquisition by eliminating technical
and effort barriers to gathering this data.

Keywords
Web Scraping, Data Acquisition

ACM Classification Keywords
H5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

INTRODUCTION
As the Internet has continued to grow, the amount of data
publicly available has snowballed into an unbelievable
size. While this data has a lot of power and potential,
availability doesn’t necessarily translate into accessibility;
due to the structure and immense size of the web, many
questions cannot easily be answered using this data. Web
scraping provides a great solution to facilitate digesting
web data, providing highly specific rules on what data to
gather and aggregate. Still, web scraping requires a
sophisticated understanding of programming, web
technologies such as HTML, and the structure of data on
the web (e.g., the Document Object Model (DOM)). As a
result, programmers who want to collect data from the
web often find themselves writing tedious, complicated
scripts and people without technical experience often find
themselves unable to collect the data at all.

Here, we present a browser-integrated visual interface for
automated data acquisition over multiple web pages with
the goal of reducing the current barriers to extracting
relevant data on the web. We attempt both. Our system,
Scrappy, is designed for sites that are composed of many

pages of similar semantic structure. As a simple example,
the Internet Movie Database (IMDB) contains several
movie pages, where each page consists of data for one
movie and all of the movie pages have similar structure.
Other examples include Amazon products and Yelp
businesses, among others. These sites generally use a
templating engine to transform database records into well-
formatted, user-readable content. Our tool takes
advantage of the structural similarity across pages to
allow users to scrape content from multiple pages after
creating a template corresponding to just one example
page.

In this paper, we describe the implementation of our
system, present our observations and results from using
Scrappy on a number of web domains, and discuss the
challenges of designing a simple, flexible tool for data
acquisition on the web.

RELATED WORK
There are a number of enterprise products and research
projects out there that try to solve the problem of data
acquisition and attempt to make web scraping more
accessible.

In the research domain, the Thresher project is most
similar to ours in approach and scope in that it attempts to
address the problem of facilitating scraping for non-
technical end-users [1]. Using Thresher, users create a
“wrapper” which specifies the semantic relations between
data on a page in RDF format. Using this wrapper,
Thresher provides a fairly sophisticated and reliable
solution for scraping and interacting with semantic
content on single pages. We extend this approach in a
number of ways. First, we address data aggregation across
pages and attempt to automate the scraping process over
multiple pages. Second, we provide a set of suggestions
for scrapable content on the page, with the aim of making
the data acquisition task one of recognition rather than
recall. Additionally, in the interest of making scraping
accessible to non-technical users, we created Scrappy as a
Firefox add-on, which is easy to install and works across
platforms. Thresher uses MIT’s Haystack browser, an

Scrappy: Simple Web Scraping
Amir Ghazvinian1 Sean Holbert2 Nikil Viswanathan2

Stanford University

1Department of Biomedical Informatics
2Department of Computer Science

{amirg, sholbert, nikil}@stanford.edu

impressive technology, but leaves to user constrained to a
much less commonly used browser.
There are also several prominent enterprise tools for
acquiring data from the web, such as Mozenda [2] and
Visual Web Ripper [3]. Both of these tools run in a
custom browser and require significant effort to set-up
properly and to understand or use effectively. Mozenda,
perhaps the most usable of the available enterprise tools,
is designed to collect data for multiple similar elements
listed on the same web page, such as a series of product
reviews. We focus here on applying a template across
multiple similarly structured pages rather than within a
single page as Mozenda does, but this serves as a
promising area for future exploration.

THE SYSTEM
Scrappy is designed to scrape web content from sites that
are composed of many pages of similar semantic
structure. The system is implemented as a Firefox
browser extension, and works in three main stages to
scrape web data. First, a user navigates to a page that he
would like to scrape and generates a template for the
content that he would like from that page. Next, the user
selects a set of links that point to pages matching the
content template defined by the user. Finally, the user
selects an output data format and Scrappy crawls the links
specified by the user and scrapes content corresponding to
the user’s template. We discuss each of these stages in
detail in this section.

Template Creation
The first step in acquiring data from the web using
Scrappy is to create a template that can be applied to
scrape data from multiple pages of similar structure
(Figure 1). In order to specify such a template, the user
navigates to an example page and begins template mode.
Upon entering template mode, our system does four
things:

1. We modify the structure of the current page to
improve the user’s ability to select content on the
page for scraping. For any elements on the page
that match the pattern
<tag1>text1<tag2>text2</tag2></tag1>, we
enclose text1 in a tag so that the user
may easily highlight and select just text1 without
selecting text2.

2. We suggest elements on the page that may be of
interest for scraping. At this stage, suggestions
are purely structural. Here we suggest <table>
elements as well as several other types of
elements (e.g., <h1>, <a>,) as long as
these elements are not contained within a
<table> element.

3. We highlight suggested elements in yellow on
the page and allow users to hover over and select
any element (suggested or not) for scraping.
When a user hovers over a scrapable element,
this element is temporarily highlighted in blue on
the page. When the user selects an element, the
element highlight becomes permanently green
and the user is asked to name the field he is
scraping.

4. We disable links on the page so that a user does
not accidentally navigate away from the page
while scraping.

The four processes above form the core of Scrappy’s
template creation mode. However, we also enable users to
refine the suggestions made by the system by specifying
the location of a page with a similar template. If a user
chooses to do this, we compare the content on the
template page to that of the additional page, removing
content contained on both pages. This typically allows the
system to avoid or remove suggestions that include
elements in the page’s header, footer, or sidebar, which
are common across all pages with the same template.

Figure 1. Screenshot of a portion of an IMDB page in
template creation mode. Items in highlighted in yellow
indicate suggestions made by our system, while items
highlighted in green indicate elements selected by the user
for scraping.

Link Selection
Once the user has selected a content template, he must
specify a set of pages that match that template in order to
scrape data from these pages. The user navigates to a page
that contains links to a set of pages matching the template
specified in the previous step. Here, the user can select the

links that he wishes to scrape simply by click on them.
When the user hovers over a link in link selection mode,
Scrappy highlights a set of similar links. Clicking on any
of these links will select and highlight all of them for
scraping, which saves the user time in specifying links for
scraping. The system determines link similarity by the
similarity of the XPath queries required to reach those
links in the page’s DOM [4].

Of course, the link selection process requires that a page
actually exists with all links that the user wishes to scrape.
Improving the flexibility of link selection will be an
important area for future work.

Scraping
Once the user has specified a content template and has
selected a set of links to crawl, he simply selects an output
format (currently CSV and JSON are supported) and

begins the scrape. At this point, Scrappy launches threads
to the pages given by the user in the link selection process
and searches for the elements corresponding to the
content template. For each field in the template page, we
have previously generated an XPath query, which we use
to query the DOM of each new page in order to identify
the correct element on the page. If we are unable to locate
the element with the given XPath query, which is possible
with small differences across pages, we generalize the
query and attempt to find the element a second time. Once
we have finished scraping all pages in this manner,
Scrappy compiles the results from all pages, converts the
data to the appropriate format, and prompts the user to
save the data to his file system.

RESULTS
We conducted preliminary tests of the system on a set of
four users, running Scrappy on a number of different sites

Data URL Successfully Scraped Comments

IMDB
Movies

imdb.com Title, summary, year, genre,
cast, rating, director, etc.

 Success!

Amazon
Music Store

amazon.com/
music

Artist ,genre, album, album
length, album price, song name

Successfully scraped data into 3 tables linked by
an “id” column.

Android
App Store

market.android.com App name, description, ‘last
updated’, app size, app genre,
app version, supported android
OS, Price, content rating.

Success!

Google
Finance

finance.
google.com

Failed, but could scrape name
and shares

Some major fields like market value and daily
change could not reliably scrape. Google
actively tries to prevent scraping.

South
American
countries on
Wikipedia

en.wikipedia.org/
wiki/
South_america

Failed User tried scraping the right-aligned details table
of South American countries. Differences in
DOM structure for different countries made
scrape unreliable.

LinkedIn
connections
data

linkedin.com/
connections

first name, last name, title, most
recent job position, professional
experience summary

This scrape browsed data for all of a user’s
connections on LinkedIn. Some anchor
elements that were selected in the template
didn’t scrape due to Javascript actions LinkedIn
associated with the links

ESPN
Basketball
Stats

http://espn.go.com/n
ba/statistics

Complete ‘GAME LOG’ and
‘STATS’ tables for each player,
player name, 2010-11 season
stats

Some of the subheaders in one of the tables
didn’t scrape. This was fixed by the user by
comparing Scrappy’s output and the original
template.

Table 1. The results of scraping several domains using Scrappy.

to test its scraping capabilities. Table 1 lists the sites we
tested with fields that were successfully scraped, along
with comments relevant to the domain. Users generally
felt the interface was intuitive and understood how they
were marking up the data on a page in relation to the
output file(s). Some suggested minor UI changes for
entering the second example URL, but otherwise they
were generally satisfied with the UI. Out of the users and
scrapes we tested, only two scrapes really were
categorized as failures (see Table 1).

DISCUSSION
Scrappy demonstrates that technical skills are not a
requirement for scraping data from the web, and the
application provides a fairly reliable platform for scraping
many different data domains on the web. While Scrappy
is powerful, it only solves the first step of data acquisition
in the long pipeline of data manipulation processes
leading to meaningful visualization and analysis. Scrappy
can be easily coupled with other user-friendly data
cleaning and integration products like Wrangler [5] to
help refine the data pulled from the web. We noticed first
hand that data cleaning products were especially useful
for numeric values pulled from the web, as they often
include units or edge case values (i.e., for a “price”
attribute in some cases it might say “Free” instead of $0).

The inability of Scrappy to scrape particular sites in tests
highlights some of the limitations of the system. For
example, in one test, a user attempted to scrape data from
infoboxes on Wikipedia pages for South American
countries. However, despite the boxes containing
somewhat structured fields and information, the structural
variation across pages prevented us from scraping the
pages successfully. This limitation of the system suggests
the need to tie pages together semantically as well as
structurally, as the data in Wikipedia infoboxes conforms
to a defined vocabulary of field names.

There are also many areas for future work. First, allowing
users to perform aggregation of specified fields on a page
would be very powerful. For example, if you are pulling
LinkedIn data, and you want to know how many jobs
someone had in the past, you might want to group all
instances of jobs into the same field.

We also observed while developing Scrappy that even
sites that generate pages according to a template can have
small variations across the domain. For example, some
IMDB pages include an additional widget in the page for
users of the site to find movie show times near them; this
widget only appears in pages with movies currently in
theaters. We currently allow some generalization of DOM
queries to allow more flexibility in finding data across
pages, but accounting for small variations in the page is a

major challenge that will have to be addressed more
robustly in future work.

In this work, we have presented a system that allows a
non-technical user to scrape data from the web through a
simple, browser-integrated interface. While there is much
remaining work to be done in making the system more
flexible and usable across a wide variety of sites, our
initial user studies have shown the tool to be both
relatively easy to learn and useful in scraping data from a
number of different domains. We hope that the
availability of such a tool will lower the barrier to
scraping data and make the web of data more accessible
for analysis in the future.

ACKNOWLEDGMENTS
We would like to thank Jeff Heer and Diana MacLean for
their feedback and ideas in implementing this project.

REFERENCES
1. Hogue and D. Karger, “Thresher: Automating the
Unwrapping of Semantic Content from the World Wide,”
Proc. 14th Int'l Conf. World Wide Web (WWW), pp. 86-
95, 2005.
2. Mozenda. http://mozenda.com. Accessed June 8, 2011.
3. Visual Web Ripper. http://www.visualwebripper.com/.
Accessed June 8, 2011.
4. XML Path language (XPath) specification.
http://www.w3.org/TR/xpath, 1999.
5. Wrangler: Interactive Visual Specification of Data
Transformation Scripts. Sean Kandel, Andreas Paepcke,
Joseph Hellerstein, Jeffrey Heer. ACM Human Factors in
Computing Systems (CHI), 2011

